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ABSTRACT

Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due
to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability.
However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them,
then these moons may be habitable. In this work, we present a model for planetary transit simulation considering
the presence of moons and planetary rings around a planet. The moon’s orbit is considered to be circular and
coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings
can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the
presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our
model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit.
White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and
Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using
photometry. The results show that it is possible to detect moons with radii as little as 1.3 R⊕ with CoRoT and 0.3 R⊕
with Kepler.
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1. INTRODUCTION

Since the detection of the first extra-solar planet orbiting a
solar-like star in 1995, 51 Peg b (Mayor & Queloz 1995), several
new discoveries have been made. The most-used planetary
detection methods are radial velocity and transit. Together both
techniques led to the discovery of the vast majority of the over
570 planets observed so far (according to the Extra-solar Planets
Encyclopaedia, http://exoplanet.eu). When the same planet is
detected by both methods, the complete set of planetary and
orbital parameters is determined. Two space missions designed
to detect planetary transits are operational right now: CoRoT,
from the CNES with a consortium of many countries, and
Kepler, from NASA.

One of the motivations for the search of extra-solar planets is
the quest for places suitable for the emergence of life. For this to
be possible, the planet needs to be located in a place known as
the habitable zone (Huang 1959; Kasting et al. 1993). This is the
region around the host star where the radiation received by the
planet is such that it allows for water to exist in its liquid state.
Furthermore, the planet needs to be rocky. Due to observational
bias, the majority of the planets found to date have been gaseous
giants, which excludes them from being habitable even if they
are in the habitable stellar zone.

Through observation of the solar system, we can infer
that the existence of moons and planetary rings around gas
exoplanets may be common. Also, we can deduce that moons
are rocky by nature. Planetary rings may exist in very different
configurations, from the rarefied rings of Uranus to the giant
rings of Saturn. The detection of both moons and/or rings
may uncover important clues about the planet formation and
migration process. Moreover, if a gas planet located in the stellar
habitable zone has moons, these moons may also be habitable,
making them a good place for life to evolve.

Sartoretti & Schneider (1999) suggested that exomoons
could be detected using photometry. The presence of moons

around an exoplanet would cause distortions in the transit light
curve in the form of steps or asymmetries. The detection of
these distortions would provide the moon’s orbital parameters.
Using this technique and photometric data from the Hubble
Space Telescope, Brown et al. (2001) searched for moons and
rings around the exoplanet HD 209458b. However, nothing
was found. Kipping (2011) proposed an algorithm capable of
analytically generating transit light curves of a planet with a
moon and showed how this cound be used in the search for
moons using photometry. On the other hand, Han & Han (2002)
studied detection possibility using gravitational micro-lensing
events. Williams & Knacke (2004) showed that it is possible
to detect moons orbiting gaseous giant planets in the habitable
zone using spectroscopy in the 1.5–5 μm band. Kipping (2009a,
2009b) suggested that moon detection is possible from the
effects on the planet motion, which may be detectable through
precise measurements of the timing and duration of the transits.
These are known as transit time variation and transit duration
variation.

Barnes & Fortney (2004) suggested that rings around a
Saturn-like exoplanet could be detected with a photometric
precision of (1–3) × 10−4 and a time resolution of 15 minutes,
as long as the ring was not viewed close to edge-on. This
resolution is within the accuracy that the Kepler space telescope
can achieve for Sun-like or brighter stars. Ohta et al. (2009)
studied ring detection through photometry and spectroscopy,
and concluded that rings with significantly great inclination
could be detected with a radial velocity precision of 1 m s−1.
Schlichting & Chang (2011) studied the nature of rings that can
exist around exoplanets and concluded that rings around close-
in planets can show non-trivial Laplacian planes. This is caused
by the increased effects of the planet’s quadrupole moment.
These so-called warped rings furnish important clues about the
planet’s interior and spin period. Despite all these proposed
methods, no exomoon or planetary rings have been observed
so far.
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Here, we propose a model of planetary transit simulation that
may be used in the search for exomoons through their signature
in the light curve of their host planets. Beside the moons, the
model may also simulate the transit of a planet with a ring
around it. The model we propose here is capable of generating
transit light curves numerically, unlike Kipping’s (2011) model.
Despite the larger processing time needed to fit light curves using
this method, it has the advantage of being easily adaptable to
include new features, such as additional moons, changes in the
ring plane, or starspots. The goal is to apply this model to the
observations of the CoRoT and Kepler space telescopes, looking
for the photometric signals that may indicate the presence of
moons or rings around exoplanets.

Our model does not consider the detection of the warped rings
shown by Schlichting & Chang (2011). Such rings are predicted
around close-in exoplanets with an orbital period of a few days.
Thus, our model is limited to the detection of rings located in
the planet’s equatorial plane, with a larger semimajor axis. As
the occurrence of such warped rings depends on the quadrupole
moment J2 and on the density of the planet, it is difficult to
establish a general criterion for the validity of our model. For
example, for the case of an exoplanet with density 3 g cm−3 and
J2 = 10−2, warped rings occur for a semimajor axis below 0.05
AU (see Figure 6 of Schlichting & Chang 2011). Planets with
a larger semimajor axis will have rings located in the planet’s
equatorial plane and could be detected by our model.

The next section describes the model used in this work,
whereas Section 3 presents the application of this model to a
few study cases. Section 4 discusses the detectability threshold
of moon and ring systems. Finally, the last section lists our main
conclusions.

2. THE MODEL

The model used here is based on that of Silva (2003), where
the star is considered a disk with limb darkening and the planet a
completely dark disk. Both stellar and planetary parameters can
be fit by the model. To minimize the number of free parameters,
we consider a simple model where the moon’s orbit is coplanar
with the planetary one and is also circular. Looking at the
solar system’s moons, we see that these assumptions are a little
limiting. However, as this is our first study on the detection
of moons, we choose to consider the simplest model. In a
future work, we can consider a more realistic model, including
orbital inclinations and eccentricity for the moon. Regarding
the planet’s eccentricity, following the strategy proposed by
Kipping (2008), the model simulates elliptical orbits only for
the cases where eccentricity was measured by other methods,
such as radial velocities.

Stellar input parameters for the model are rotation period, ra-
dius, and mass (the latter two in solar units). The rotation period
is used in the calculation of the longitude position of starspots
in successive transits. We also have two limb-darkening param-
eters. The planetary input parameters are orbital period, radius,
mass, orbital inclination angle, eccentricity, and position of the
periastron. From the orbital period, the orbit’s semimajor axis is
calculated by Kepler’s third law. Lastly, the moon input param-
eters are orbital period, radius, mass, and the angular position
of the moon in its orbit at the starting time of the first transit.
For the rings, the input parameters consist of inner and outer
radii, and two inclination angles—one with respect to the plane
of the sky and the other with the planet’s orbital plane. The
transparency of the rings may also be fit.

The temporal resolution of the resulting light curve is chosen
within the model by adjusting the time interval for each
simulated photometric data point. Here, we used a temporal
resolution of 32 s for future comparison with CoRoT data and
1 min for Kepler data.

Using stellar and planetary parameters, the planetary orbit is
calculated. The line of transit is the projection of this orbit onto
the stellar surface. At each time interval, the program calculates
the position of the planet and its moon. The total luminosity
of the star–planet–moon system is then determined by summing
the intensities of all the pixels in the image where the pixels
occupied by the planet and its moon have zero value. In the case
of rings, the occupied pixel intensity is multiplied by the ring
transparency factor. At the end of the transit, the light curve is
normalized to one from the outside transit data points.

Figure 1 shows two examples of transits from the model.
Figure 1(a) shows the transit of a planet and a moon in front of
the star and Figure 1(b) shows the transit of a planet with rings.

It is also possible to add spots on the stellar surface, where
each spot is modeled by three extra parameters: radius, intensity
(with respect to stellar central intensity), and longitude position
at the start of the first transit. The spot latitude is considered to be
that of the projected transit line. From the stellar rotation period,
the spot longitude position on consecutive transits is calculated.
A further assumption is that the spot position does not change
within a single transit (usually lasting a few hours), which is
reasonable when the stellar rotation period is much larger than
the transit duration.

2.1. Planet–Moon Dynamics

In this work, no attempt has been made at a dynamical
analysis of a planet with moons or rings. Regarding planet–moon
systems, we used the results of Domingos et al. (2006), where
the authors used numerical simulations to obtain semiempirical
expressions for the semimajor axis maximum and minimum
that a satellite orbiting a giant extra-solar planet may have as
a function of the stellar and planetary parameters. Domingos
et al. (2006) also estimated the maximum mass of a satellite
such that its orbit is stable. An interesting result is that planets
with orbits very close-in to their host star can only hold
moons with very small masses, but more distant planets may
have stable moons with masses even larger than that of the
Earth.

For example, Rho Crb at a distance of 0.224 AU from its
host star, with an orbital period of 39.8 days, may harbor a
satellite of up to 1.5 M⊕. Farther away planets, such as HD
92788, at approximately 1 AU from its star, allow for a satellite
with a maximum mass of 1×104 M⊕. The transiting extra-solar
planets with the longest periods observed so far are CoRoT-9b
(95.27 days), HD 80606 (114.34 days), and Kepler-11g
(118.37 days). Thus, these planets may harbor a moon with
mass similar to or even larger than Earth’s, that may be de-
tectable from the application of the present method to CoRoT
or Kepler light curves.

2.2. Planetary Transit

Figure 2 shows two examples of light curves obtained from
our model. The figure on the left (a) is for the transit of a planet
like HD 209458b (Southworth 2010), whereas the figure on the
right (b) is for a planet similar to CoRoT-2b (Alonso et al. 2008).
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(a) (b)

Figure 1. (a) Jupiter-like planet and a 2 R⊕ moon transiting in front of the star. (b) Saturn-like planet with rings transiting in front of the star. The rings have the same
dimensions as Saturn’s. The angle with the sky plane is 78◦ and the angle with the orbital plane is 20◦. Both images were obtained from the model.

(a) (b)

Figure 2. Transit model of two planets. (a) HD 209458b (R = 1.38 RJ , P = 3.524 days, and i = 86.◦59) and (b) CoRoT-2b (R = 1.465 RJ , P = 1.743 days, and i =
87.◦84).

2.3. Transit of a Planet with a Moon

Figure 3 shows two examples of light curves of a planet with
an orbiting moon. Both panels are for a Jupiter-sized planet
transiting a star identical to the Sun with an orbital period of
45 days. In the model, the added moon around this planet has
two Earth radii. In Figure 3(a), the moon’s orbital period is
5 days, while in Figure 3(b) it is 2 days. Also, the position angle
of the moon with respect to the planet is 0◦ in the first case and
60◦ in the second one.

When adding a moon around a planet in the model, two
characteristic signatures may occur. The first one is a step, which
may appear at the beginning or at the end of a transit, while the
second effect is a discontinuity, a jump, seen in the bottom of the
transit. The step at the beginning (see Figure 3(a)) occurs when
the moon’s ingress happens before that of the planet, while the
step near the end of the transit (Figure 3(b)) is caused by the

moon’s egress after the planet. Both effects are marked with an
upward arrow.

Furthermore, when the moon’s orbital period is small, an
asymmetry arises in the bottom of the transit, shown by the
downward arrows in Figure 3. This asymmetry is generated
when the moon is eclipsed by the planet. It may also happen
if, at the start of the transit, the moon is already behind (or in
front of) the planet, but falls out of eclipse during the transit.
The width and intensity of this signal depends on the moon’s
relative orbital period, radius, and also on the position angle ϕ
of the moon with respect to the planet at the initial transit time.

2.4. Transit of a Planet with Rings

Figure 4 presents the modeled light curve produced by a
transiting Saturn-like planet around a star with solar parameters
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(a) (b)

Figure 3. Model light curve of a transiting hot Jupiter (R = 1 RJ , P = 45 days, and i = 89.◦5) around a Sun-like star and an orbiting moon with 2 R⊕. The moon period
and position angle are, respectively, (a) PM = 5 days and ϕ = 0◦; (b) PM = 2 days and ϕ = 60◦.

(a) (b)

Figure 4. Transiting Saturn-like planet (R = 0.84 RJ , P = 5 days, and i = 88◦) in front of a solar-like star. Planetary rings with sizes (a) equal to and (b) increased by
50% with respect to those of Saturn.

(left panel). To enhance the signal produced by the presence of
rings, their size was augmented by 50% (right panel).

The main effect of the planetary ring system is to increase
the covered area of the stellar surface, the result of which is
to deepen the transit light curve. Moreover, the transit shape
becomes rounder at the ingress and egress instants, than it does
if no rings are present. Both these factors depend strongly on
the ring transparency, being larger in the case of more opaque
rings, as expected.

An interesting effect appears when the ring size is increased.
In this case, the light curve becomes more triangular, similar to
the light curves produced during grazing eclipses of binary star
systems.

2.5. Starspots

If the star has one or more spots on its surface, similar to
sunspots, Silva (2003) has shown that the photometric light
curve during a planetary transit will display a small “bump.”
This occurs because when the planet occults a darker region
of the stellar surface, occupied by the spot, there is a relative
increase in the total intensity. Moreover, the detection of the

same starspots on different transits may be used to determine
the rotation period of the star (Silva-Valio 2008).

Figure 5 shows the same light curves from Figure 2, except
now a spot was added to the stellar surface. This spot, located at
30◦ longitude (measured from the center of the star), has a size
of half of each planet radius and a relative intensity of 0.6 times
the stellar central intensity.

In some cases, the photometric signal produced by the pres-
ence of moons may be mistaken by that caused by starspots.
Distinguishing between the two cases is possible when suc-
cessive transits are observed since the spots signal will have a
periodicity equal to the stellar rotation period, while those of
the moons will have a different period, following its own orbital
period.

Examples of how confusing things can get, especially how
the presence of starspots may hinder the detection of moons,
are shown in Figure 6. The figure presents the transit of a planet
with an orbiting moon in front of a star, in whose surface there
is a spot, for two situations: only one spot (Figure 6(a)) and
four spots (Figure 6(b)). In both panels, the planet is identical
to Jupiter with a period of 45 days and the moon has a 3 R⊕
and an orbital period of 2 days around the planet. In the case of
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(a) (b)

Figure 5. Planetary transit light curves for (a) HD 209458b and (b) CoRoT-2b, where the “bump” in the bottom of the transit indicates the presence of a spot on the
stellar surface. In each case, the spot has half the planet radius and intensity 0.6 and is located at 30◦ with respect to the star center.

(a) (b)

Figure 6. Jupiter-like transiting planet (R = 1 RJ , P = 45 days, and i = 89.◦5) with a 3 R⊕ moon around a star equal to the Sun. (a) The star has a spot with 0.5 planet
radius, intensity 0.6, located at 30◦. (b) The star has four spots, with radii, respectively, 0.7, 0.6, 0.7, and 0.8 planet radius; intensity 0.6, 0.5, 0.6, and 0.7; located at
−30◦, −15◦, 5◦, and 30◦. Each spot signal appears duplicated, once when the moon occults it and again when the planet eclipses the spot.

Figure 6(b), it is clearly seen that the presence of starspots can
significantly complicate the detection of any moon effect on the
light curve.

3. TEST RESULTS FROM THE MODEL

To verify the detectability of moon and ring systems around a
planet, it is possible to add Gaussian noise to the modeled light
curve and then try to recover the input parameters from a fit. For
CoRoT data simulation, we used a noise level of 6 × 10−4, such
as that observed for CoRoT-2 (Silva-Valio & Lanza 2010), and
in the case of the Kepler data, 2 × 10−5.

Once the noise has been added to the model light curve, we
fit this light curve with the following sequence of algorithms.
First the PIKAIA (Charbonneau 1995) algorithm is used to
obtain a first guess that is then input into the AMOEBA (Nelder
& Mead 1965) routine. PIKAIA is an algorithm, the main
advantage of which is to find the global maximum of the function
to be maximized, using only the allowed interval value for
each free parameter. These results are then used as input to
the AMOEBA routine that refines the result using the simplex
method for convergence minimization. The error estimates for

the fitted parameters were obtained using the MPFIT algorithm
(Markwardt 2009).

After the fitting procedure, we compute the goodness-of-fit
using the parameter Q, as defined in Press et al. (1992) as the
probability that the chi-square should exceed a particular value
χ2 by chance and calculated by

Q(χ2|ν) = 1 − P

(
ν

2
,
χ2

2

)
, (1)

where P is the incomplete gamma function P(a,x). Generally, if
Q is larger than 0.01, then the fit is acceptable. In this case, it
can be said that such an event (moon or ring) is detectable. If Q
is between 0.001 and 0.01, then the fit may or not be acceptable,
and more studies of the noise are required. This can be caused,
for example, if the measurement errors are underestimated. Q
below 0.001 indicates a bad fit. On the other hand, Q very
close to 1 is also not expected. This is, literally, too good to be
true. This can be caused by a non-normal error distribution
or overestimated measurement errors. Next, we show some
examples of the fit to light curves with noise added and the
results they yield.
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(a) (b)

Figure 7. Light curve fit of model planetary transit for (a) HD 209458b and (b) CoRoT-2b. The dots represent the noisy light curve data points, whereas the solid line
shows the best-yield fit.

Table 1
Fit Results for Planetary Transits of HD 209458b and CoRoT-2b for CoRoT Simulations

Planet Parameter Original Value Fit Result Reduced χ2 Q

HD 209458b Planet radius (RJ) 1.38 1.382 ± 0.025 1.0639 0.098
Orbital inclination (◦) 86.59 86.6 ± 0.3

CoRoT-2b Planet radius (RJ) 1.465 1.466 ± 0.016 1.0157 0.3890
Orbital inclination (◦) 87.84 87.84 ± 0.21

Table 2
Fit Results for Planetary Transits of HD 209458b and CoRoT-2b for Kepler Simulations

Planet Parameter Original Value Fit Result Reduced χ2 Q

HD 209458b Planet radius (RJ) 1.38 1.3797 ± 0.0011 1.0627 0.1747
Orbital inclination (◦) 86.59 86.594 ± 0.015

CoRoT-2b Planet radius (RJ) 1.465 1.4636 ± 0.0007 1.1156 0.0859
Orbital inclination (◦) 87.84 87.839 ± 0.009

3.1. Fit of a Planetary Transit

The first test to the model is to apply it to the two transiting
planets described in Section 2.2, where Gaussian noise has been
added similar to that of CoRoT and Kepler observations. In this
fit, all the stellar parameters and the orbital period (or semimajor
axis) of the planet were fixed, and the only free parameters were
the planetary radius and the orbital inclination angle.

The comparison between the original parameters and those
obtained from the fit of the noisy modeled light curve are seen
in Tables 1 and 2, and in Figures 7(a) and 7(b) for HD 209458
and CoRoT-2. Both light curves had a noise level similar to that
of the CoRoT satellite. The two panels show the simulated data
points as dots and the fit as a solid line. The residuals are shown
in the lower part of each panel.

3.2. Transit Fit of a Planet with Moon

If the planet has a moon in orbit around it, there are two
factors that make its detection difficult. The first one is the
noise, as expected. In cases where the moon is very small, its
signature in the light curve is flooded by the noise level, leaving
it undetectable. Another difficulty is the presence of starspots
on the stellar surface, mentioned above.

To demonstrate how moons can be detected, we consider
the case of a hot Jupiter with a period of 45 days around its

host star, modeled with no spots. In orbit around this planet
there is a moon with 3 R⊕ and a period of 5 days. Simulations
were performed for noise levels of both CoRoT and Kepler. The
parameters obtained from the fit and the original ones are listed
in Table 3, whereas the fit results are plotted in Figure 8, for
CoRoT noise level. The fit was performed for five consecutive
transits, but the figure shows only the first.

We noticed that the larger the number of transits considered
in the fit, the smaller the number of iterations necessary for the
fitting algorithms to obtain a good fit, that is, the easier it is to
detect the moon.

3.3. Transit Fit of a Planet with Rings

As seen above, planetary rings can be detected by the round
shape of the transit at ingress and egress times, besides the larger
depth of the transit (due to the increase in the stellar surface area
covered). For these signatures to be detectable, the noise is the
predominant factor. If the signature is too small, the noise will
completely overcome it.

To exemplify, we simulate the transit of a planet identical
to Saturn and its rings, with a 30 day period and 89◦ orbital
inclination. The transit is modeled for two cases: one with the
noise level of CoRoT and the other with that of the Kepler
telescope. In both cases, the light curve was submitted to a fit
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Table 3
Fit Result of Five Transits of a Planet with an Orbiting Moon

Noise Level Parameter Original Value Fit Result Reduced χ2 Q

CoRoT Planet radius (RJ) 1.0 0.9976 ± 0.0005 1.0070 0.3954
Moon period (days) 5.0 5.001 ± 0.012
Moon radius (R⊕) 3.0 2.979 ± 0.019
Moon position angle (◦) 0.0 0.21 ± 0.11

Kepler Planet radius (RJ) 1.0 0.9999 ± 0.0007 1.0419 0.1337
Moon period (days) 5.0 5.000 ± 0.023
Moon radius (R⊕) 3.0 2.999 ± 0.024
Moon position angle (◦) 0.0 −0.4 ± 0.6

Table 4
Fit Results for a Saturn-like Planet Simulation, Considering Only the Planet

Noise level Parameter Original Value Fit result Reduced χ2 Q

CoRoT Planet radius (RJ) 0.84 0.934 ± 0.022 1.0291 0.2050
Orbital inclination (◦) 89 89.0 ± 0.4

Kepler Planet radius (RJ) 0.84 0.9434 ± 0.0009 25.10 0
Orbital inclination (◦) 89 88.999 ± 0.019

Table 5
Resulting Parameters for the Case of a Transiting Saturn, as Would be Observed by Kepler

Parameter Original Value Fit Result Reduced χ2 Q

Planet radius (RJ) 0.84 0.839 ± 0.005 1.0173 0.3553
Orbital inclination (◦) 89 89.00 ± 0.03
Inner radius (RP) 1.11 1.11 ± 0.06
Outer radius (RP) 2.32 2.316 ± 0.026
Angle with the sky plane (◦) 78.0 77.9 ± 1.5
Angle with the orbital plane (◦) 20.0 19.9 ± 0.5
Transparency 0.5 0.51 ± 0.06

Figure 8. Light curve fit for the first transit of a hot Jupiter (R = 1 RJ , P =
45 days, and i = 89.◦5) with a moon (RM = 3 R⊕ and PM = 5 days) considering
the noise level of CoRoT.

process assuming only the presence of the planet. The result of
this preliminary fit is shown in Figure 9 and Table 4.

From the analysis of the residual plotted on Figure 9 and
the Q value in Table 4, we see that the fit considering only
the planet yields a satisfactory result only for the CoRoT noise
level (Figure 9(b)). This indicates that a ring system such as that
of Saturn could only be detected by the Kepler satellite. The
CoRoT satellite would identify this light curve as that produced

by a giant planet with a radius slightly larger than that of Saturn
(12.3 %), but without rings.

Next, we fit only the light curve plotted in Figure 9(b) but now
considering the presence of rings, that is the ring parameters are
taken into account. The resulting fit parameters are listed in
Table 5, whereas the result of the fit is plotted in Figure 10.
Comparing the residual of Figures 9(b) and 10, one can see
that the fit is much better for the model where the rings were
included.

The Q value in Table 5 and the residuals in Figure 10 show
that the fit was satisfactory.

4. DETECTION LIMITS

To determine the radius of the smallest detectable moon,
several simulations were performed decreasing the radius at
each run. Every simulation had its light curve fitted yielding the
moon parameters. Whenever the Q value indicates a good fit, we
consider the moon detectable. Thus, in the case of CoRoT, the
smallest detectable moon in orbit around a Jupiter-sized planet
has a radius of 1.3 R⊕, while in the case of Kepler, this minimum
radius decreases to 0.3 R⊕. The latter moon would be smaller
than Ganymede, the larger moon of our solar system, the size of
which is 0.41 R⊕. In all the simulations, the star was considered
Sun-like with no spots.

For the case of planetary rings, the process is slightly different,
because, in this case, the biggest problem is distinguishing
between single planets and those with rings. In this case, then,
we adopt a criterion that takes into consideration the residuals.
When fitting the light curve of a planet with rings, first only the
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(a) (b)

Figure 9. Saturn-like planet (R = 0.84 RJ , P = 5 days, and i = 88◦) transit fitted without considering the presence of its rings for noise levels of the (a) CoRoT and
(b) Kepler telescopes, respectively.

Figure 10. Saturn-like planet (R = 0.84 RJ , P = 5 days, and i = 88◦) transit
fitted, considering now the presence of rings.

planet parameters are fit. If the Q value indicates a bad fit, then
we may conclude that the rings can be detectable.

To establish a detectability criterion, first we define the
effective area of the rings as the ring projection on the plane
of the sky multiplied by its opacity, according to

Aeff = (
R2

E − R2
I

)
π cos ψ(1 − τ ), (2)

where RI and RE are the internal and external radii, respectively,
ψ is the inclination angle of the rings relative to the plane of
the sky, and τ is the transparency. Totally transparent rings
have τ = 1, whereas totally opaque ones have a zero value of
transparency.

The results of our simulations showed that in the case of the
Kepler data, planetary rings are detectable when the effective
area corresponds to approximately 3% of the area covered by the
planet. For example, rings with τ = 0.5 and an inclination angle
of 78◦ with the plane of the sky in orbit around a Saturn-like
planet, will be detectable with rings about 51% the size of those
of Saturn. For the CoRoT data, the effective area corresponds
to approximately the area of the planet. Therefore, for the same
planet as in the previous case, the rings should have sizes 45%
larger than those of Saturn to be detectable above the CoRoT
noise level.

5. CONCLUSION

Here we reported the results of a model capable of simulating
planetary transits, including the effect of existing moons and
rings around that planet. Light curves were presented for each
case. Estimates of the threshold detection for such events were
made. It was shown how these events may be detected using the
PIKAIA and AMOEBA routines for curve fitting. As expected,
the main limiting factor for the possible detection is the noise
level of the telescopes. This can be seen by comparing the
results from simulations of photometric light curves of CoRoT
and Kepler.

The CoRoT data allow for the detection of moons with at least
1.3 R⊕ in size around a planet identical to Jupiter. In the case
of Kepler data, this detection limit on the moon radius drops
to 0.3 R⊕. For planetary rings, a Saturn-like planet would be
detectable with Kepler; however, this same planet–ring system
would be mistakenly inferred as a single planet with a slightly
larger radius by CoRoT. Detection limits for both telescopes
were estimated above.

Next, this model will be applied to real light curves to search
for the types of signatures described in this work. Data from
both CoRoT and Kepler will be used. An improvement that can
be made to the model is the implementation of analysis of the
transit time and duration variations caused by the presence of
the moon that makes the planet orbit the common center of mass
(Kipping 2009a, 2009b). These timing variations would confirm
the presence of moons. Finally, by detecting the moon by both
methods—photometry and timing variation—it is possible to
establish a complete set of physical parameters for the satellite.

The authors acknowledge financial support from the Brazilian
agencies CAPES and FAPESP (grant no. 2006/50654-3).
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